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This paper extends the Boltzmann hereditary delay integral approach previously used
to predict the anelastic response of a floating flexible plate to a steadily moving
load, to describe the evolution of the response when the load is impulsively started
from rest. Asymptotic analysis demonstrates that the ultimate one-dimensional and
two-dimensional deflections (due to a line load and a point load, respectively) are
consistent with the results obtained from the earlier time-independent viscoelastic
theory. Transients in the two-dimensional case decay much more rapidly than their
counterparts in the one-dimensional case. Steady-state deflections are approached
at all load speeds in the two-dimensional theory, including the critical load speed
(coincident with the minimum phase speed of hybrid flexural–gravity waves) and the
gravity wave speed.

1. Introduction
A major motivation for the study of a moving load on a flexible beam or plate has

been its application to transport systems (rail tracks, roads or runways), originally
in temperate lands and subsequently in cold regions, where, in particular, floating ice
sheets may be exploited. The response of a floating ice sheet to a land-based vehicle or
landing aircraft has been modelled remarkably successfully by linear theory, with the
ice treated as a thin elastic plate and associated pressure variations in the underlying
water (defined by the Bernoulli equation for incompressible irrotational flow) included
by assuming non-cavitation at the plate boundary. However, to allow for the anelastic
behaviour of an ice sheet subjected to a moving load, a two-parameter Boltzmann
hereditary delay integral approach to include viscoelasticity in the plate equation was
introduced. This produced a pronounced but finite response (in lieu of the infinite
deflection predicted for an elastic plate) at the critical load speed, which is the lower
bound for load speeds at which hybrid flexural–gravity waves are generated, coincident
with their minimum phase speed cmin. The viscoelastic theory also predicts that the
maximum deflection occurs behind the load and explains other observed phenomena,
including the asymmetric (rather than symmetric) quasi-static response when the
load speed is below the critical speed, the more severe attenuation of the shorter
predominantly flexural waves appearing ahead of the load above the critical speed,
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and why the two-dimensional wave pattern may appear ‘swept back’ to some extent.
Except when contributions from larger wavenumbers become significant, explicit
consideration of finite plate thickness confirmed the validity of the thin-plate
assumption, and convenient far-field asymptotic theory may be used. In-plane stress
on the plate and water stratification are examples of other aspects also discussed in
detail by Squire et al. (1996).

The emphasis in this paper is on time-dependent theory for the response of a
floating viscoelastic plate to a moving load, whereas all such work published to date
assumes that the thin plate is elastic. Thus, Schulkes & Sneyd (1988) reviewed the
pioneering time-dependent analysis of Kheysin (1971) for a floating elastic plate, and
showed that linear theory for the one-dimensional response due to an impulsively
started steadily moving line load predicts two load speeds at which the deflection
continuously grows with time. The two singular load speeds identified were the gravity
wave speed

√
gH and the minimum phase speed cmin of the hybrid flexural–gravity

waves. However, the linear time-dependent theory for the two-dimensional response
of a floating elastic plate to either a point load or a uniformly distributed circular
or rectangular load demonstrates that only one of these two load speeds is critical
(Nugroho et al. 1999). Thus, the deflection at the load speed coincident with the
minimum phase speed cmin of the hybrid flexural–gravity waves also continuously
grows in the two-dimensional theory, albeit more slowly than in the one-dimensional
theory, that is as ln t rather than as t1/2, for time t → ∞. Transients found by Schulkes &
Sneyd (1988) in the various load speed regimes are all moderated by a factor t−1/2

as t → ∞ in the two-dimensional theory, so the resultant steady-state deflections are
reached more quickly than in the one-dimensional theory. Further, this moderating
factor also applies at the load speed

√
gH , so that the two-dimensional theory

predicts that the deflection at this speed does not grow, but approaches a steady state,
although rather more slowly than at other load speeds (the transient component at√

gH decays as t−1/3 for t → ∞, and not as t−1 for t → ∞ as do transients at other
load speeds). This confirmed a prior suggestion that the response might not grow at
the load speed coincident with the gravity wave speed

√
gH , since in two dimensions

energy can radiate away in directions other than in the line of motion of the load. It
was also anticipated from the linear two-dimensional time-independent analysis for
the response of a floating thin elastic plate to a moving load, and in particular the
observation by Milinazzo, Shinbrot & Evans (1995) that the steady-state deflection
due to a steadily moving uniform rectangular load is everywhere finite at the load
speed

√
gH . Numerical computations for the two-dimensional response also produce

deflection and stress amplifications, defined as the maximum deflection and stress at
the critical speed relative to the respective values due to a stationary load, which
appear to agree more closely with experiment.

As stated above, linear time-independent viscoelastic theory for both the one-
dimensional and two-dimensional response (due to both a line and point load) not
only accounts for some otherwise unexplained observations in experiments involving
moving loads on ice plates, but also removes the singularity found in the time-
independent linear elastic theory, i.e. viscoelasticity introduced via a Boltzmann
hereditary delay integral approach renders a pronounced but finite steady-state
deflection at the critical load speed cmin (Hosking, Sneyd & Waugh 1988). In this
paper, we pursue this approach to examine the evolution of the response of a floating
flexible viscoelastic plate to a moving load impulsively started from rest (as in the
previous time-dependent elastic theory). The two-parameter approximation previously
used to reflect instantaneous and delayed elastic behaviour is again adopted. In § 2,
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Figure 1. Diagram of a floating ice plate.

the fundamental mathematical model is re-stated and the time-dependent aspect is
defined. In § § 3 and 4, suitable renditions of the time-dependent viscoelastic Fourier
integral are obtained for both the one-dimensional and two-dimensional deflections
due to a line load and a point load, respectively, and these results are analysed
asymptotically. The asymptotic analysis is complemented by numerical computation
in § 5, where wave patterns in the two-dimensional case are also presented. Concluding
remarks are made in § 6.

2. Mathematical model
The mathematical model describes a thin homogeneous plate of density ρ0 floating

on water of density ρ and depth H , where the undisturbed water surface is at z = 0 and
the underlying bed is at z = −H (cf. figure 1). The plate is taken to be of infinite extent,
in the usual sense that plate boundaries are assumed to have negligible influence. If
η(x, y, t) denotes the small vertical deflection due to a forcing function f (x, y, t)
representing the moving load, where x and y are the other Cartesian coordinates in
the plane of the undisturbed horizontal surface and t is the time, then the hereditary
delay differential equation for a thin viscoelastic plate is

D∇4

(
η(x, y, t) −

∫ ∞

0

Ψ (τ )η(x, y, t − τ ) dτ

)
+ ρ0hηtt =p − f (x, y, t), (1)

where Ψ (t) is the viscoelastic memory function dependent upon the material properties
of the plate, constant D is the effective flexural rigidity of the plate, h is the plate
thickness, and p is the water pressure at z = 0.

A sketch of the configuration in the context of a sea ice sheet is shown in figure 1.
The detailed structure of ice, especially sea ice, is complex and its physical properties
vary considerably with depth. However, the essential parameters in the viscoelastic
form (1) of the otherwise classical differential equation for the deflection of a uniform
plate may be suitably defined or interpreted. Moreover, a fully nonlinear viscoelastic
constitutive relation for either freshwater ice or sea ice is unnecessary in the context of
a moving load, when its speed is such that the model should represent instantaneous
and delayed elastic behaviour, but not necessarily irrecoverable viscous creep. On the
assumption that the memory of the ice fades with time, the memory function may be
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represented as a finite sum of exponentials, i.e.

Ψ (t) =

n∑
j=0

Aj exp(−αj t), (2)

where the viscoelastic parameters Aj and αj are real and positive. In common with
the earlier time-independent viscoelastic theory of Hosking et al. (1988), the simplest
possible representation is adopted here by setting n= 0, when there are only two
parameters involved, namely A0, defining the magnitude of viscoelastic effects, and
the reciprocal α0 of the memory timescale. This simplest case nevertheless corresponds
to a generalization of the memory function for the Maxwell viscoelastic model (where
0 <A0 =α0), and it is consistent with the so-called standard model of linear viscoelastic
theory (visualized as a spring in series with a Voigt unit) provided 0 <A0 � α0. Further
terms may be included in the finite sum to describe the response due to a slow or
stationary load. However, this two-parameter anelastic theory for a thin plate has
proved adequate to account for certain features observed in experiments involving
moving loads on both freshwater and sea ice sheets (but not predicted in the theory
for an elastic plate), as indicated above. Reference may again be made to Squire et al.
(1996).

The water pressure at z = 0 is defined by the linearized Bernoulli equation for
incompressible irrotational flow

p = −ρgη − ρ
∂φ

∂t

∣∣∣∣
z=0

, (3)

where φ denotes the velocity potential satisfying the Laplace equation ∇2φ = 0 and
the boundary condition ∂φ/∂z|z=−H = 0 at the impenetrable bed. It is assumed here
that there is neither significant water flow relative to the plate nor cavitation at the
plate–water interface. No nonlinear term is included in the mathematical model, on
the assumption that the amplitude of the plate deflection and the accompanying
water displacement remains sufficiently small everywhere (but see later). However,
it is difficult to envisage a suitable non-Eulerian alternative, given the typical quite
irregular air–water interface, especially beneath a sea ice sheet. Finally, as previously
observed, the plate acceleration term in (1) can be neglected for deflection wavelengths
much larger than the plate thickness (Davys, Hosking & Sneyd 1985; Squire et al.
1996).

Substituting (3) into (1) and taking Fourier transforms such as

η̂(k1, k2, ω) =
1

(2π)3/2

∫∫∫
η(x, y, t) exp(i(k1x + k2y − ωt)) dx dy dt (4)

yields

η̂(k1, k2, ω) =
−f̂ (k1, k2, ω)

Dk4(1 − ψ) + ρg − ρω2coth(kH )/k
, (5)

where k2 = k2
1 + k2

2 and the viscoelasticity identified with

ψ(ω) =

∫ ∞

0

Ψ (τ ) e−iωτ dτ (6)

may affect all but the largest wavelengths (k � 0). Corresponding to the simplest
possible memory function involving only two viscoelastic parameters A0 and α0, (6)
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rewritten as

ψ(ω) =
A0

α0 + iω
is deemed to suitably describe the viscoelastic behaviour of an ice sheet under the
envisaged dynamic loading (provided 0 <A0 � α0) as outlined above.

Inversion of (4) yields the main point of departure for the analysis presented in this
paper, i.e. the viscoelastic time-dependent Fourier integral for the deflection, which
may be expressed as

η(x, y, t) = − i

(2π)3/2ρ

∫∫∫
g(k, ω)f̂ (k1, k2, ω) exp(−i(k1x + k2y − ωt))

W (k, ω)
dω dk1 dk2.

(7)

Here, g(k, ω) = (α0 + iω)k tanh(kH ) and W (k, ω) = ω3 + ipω2 + qω + ir , a cubic in ω

for fixed k, where

p = −α0, q = − (Dk4 + ρg)
k

ρ
tanh(kH ), r = [(Dk4 + ρg)α0 − Dk4A0]

k

ρ
tanh(kH ).

(8)

Both q and r are real functions even in k (and p is constant), so the three roots ω of
the equation W (k, ω) = 0 are even functions of k. For any given wavenumber k �= 0,
two of these are complex roots symmetric about the imaginary axis, and the third is
pure imaginary, namely

ω1,2 = ±
√

3

2
(A − B) + i

[
α0

3
− 1

2
(A + B)

]
, ω3 = i

(
α0

3
+ A + B

)
, (9)

where A and B are real even functions in k, dependent upon the viscoelastic parameters
A0 and α0 (cf. the Appendix). In passing, it is notable that A > B for k �= 0, Im(ω1,2) > 0
monotonically increases from zero at k = 0, and Im(ω3) > 0 monotonically decreases
from its maximum α0 at k = 0.

If the viscoelastic parameter A0 is set to zero, then

g(k, ω)

W (k, ω)
=

ik tanh(kH )

ω2 + q

and hence the Fourier integral in (7) reduces to the form in the elastic limit, where the
quadratic equation ω2 + q = 0 is the familiar dispersion relation for hybrid flexural–
gravity waves (Squire et al. 1996). Indeed, for small but finite viscoelastic parameter
A0, the related contributions in (9) are

√
3

2
(A − B) = |k|c(k) + O(A0), A + B = 2

3
α0 + O(A0), (10)

where c(k) denotes the flexural-gravity wave phase speed in the absence of visco-
elasticity. Thus, in the elastic limit when A0 = 0, the two roots ω1,2 = ±|k|c(k) are
real and the method of stationary phase may be invoked to evaluate the deflection
asymptotically as time t → ∞ (cf. Schulkes & Sneyd 1988; Nugroho et al. 1999).

In contrast, with the viscoelasticity included (i.e. when A0 �= 0) both of these two
roots ω1,2 are complex and non-zero provided k �=0 as shown in (9), and the major
contribution in the asymptotic analysis for t → ∞ of each of the two related integrals
comes from the neighbourhood of the endpoint k = 0. The integral corresponding to
the additional imaginary root ω3 is likewise assessed asymptotically, after the point
at infinity (k = ∞) is first mapped to the origin (k =0).
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3. Line load
3.1. The time-dependent deflection

An impulsively started concentrated (y-independent) line load of weight F0 subse-
quently travelling with uniform speed V in the positive x-direction is represented
by the loading function f (x, t) = F0δ(x − V t)H (t), where δ denotes the Dirac delta
function and H (t) is the Heaviside unit step function. The Fourier transform of this
loading function is (Wong 1989)

f̂ (k, ω) =
F0

2

[
δ(ω − kV ) +

1

πi(ω − kV )

]
,

so from (7) the deflection is

η(X, t) = − iF0

4πρ

∫
g(k, kV ) exp(−ikX)

W (k, kV )
dk

− F0

4π2ρ

∫∫
g(k, ω) exp(−i[kX − (ω − kV )t)])

WL(ω)
dω dk, (11)

where the coordinate X = x − V t is relative to the moving load and the variable k has
been suppressed in defining WL(ω) = (ω − kV )W (k, ω).

Contour integration may be used to perform the integration with respect to ω in the
second integral of (11). The poles for the contour integration correspond to the four
roots of the quartic equation WL(ω) = 0, namely ω0 = kV and the three roots defined
in (9). For notational brevity, hereinafter let us write ω1,2 = ±λ+iµ and ω3 = iν where

λ=

√
3

2
(A − B), µ= 1

3
α0 − 1

2
(A + B), ν = 1

3
α0 + A + B. (12)

For k �=0, all four roots are distinct. Three of the four roots merge into the origin
(i.e. ω0,1,2 = 0) at k = 0, but the viscoelastic plate term in (5) vanishes in this infinite
wavelength limit, and the degeneracy is avoided by implicitly excluding the point
k = 0 (of measure zero) from any range of integration in the following analysis.

By introducing partial fractions, the second integral in (11) may be partitioned as

F0

4π2ρ

3∑
j=0

∫ ∞

−∞

∫ ∞

−∞

g(k, ω) exp(−i[kX − (ω − kV )t])

W ′
L(ωj )(ω − ωj )

dω dk,

where the derivative W ′
L (with respect to ω) evaluated at ωj conveniently represents

the product of three factors (ωj − ωk), k �= j . Then, integrating this partitioned result
with respect to ω using the Cauchy residue theorem and absorbing the first integral
in (11) yields the deflection in the form

η(X, t) =
F0

2πρ
(I0 + I1 + I2 + I3), (13)

where

Ij (X, t) = −i

∫ ∞

−∞

g(k, ωj ) exp(−i[kX − (ωj − kV )t])

W ′
L(ωj )

dk. (14)

The time-independent contribution obtained from I0 is identical to the steady-state
viscoelastic result (3.1) of Hosking et al. (1988) for a line load, and the time-dependent
behaviour resides in the contribution from the remaining integrals I1, I2 and I3.
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3.2. Asymptotic analysis

In the elastic limit A0 → 0, from (10) and (12) we have λ= |k|c(k), µ =0 and ν = α0

so that I3 → 0 and

I1 + I2 →
∫ ∞

0

tanh(kH )

c(k)

{
cos(kX − ψ1t)

ψ1(k)
+

cos(kX + ψ2t)

ψ2(k)

}
dk, (15)

where ψ1(t) = k(c − V ) and ψ2(t) = k(c + V ) are the phase functions (cf. Schulkes &
Sneyd 1988; Squire et al. 1996). In this elastic limit, let us recall that the dominant
asymptotic contributions as t → ∞, arise from the neighbourhood of points of
stationary phase, where ψ ′

1(k) = 0, i.e. at values of k where the group speed of
the hybrid flexural–gravity waves generated coincides with the sufficiently high load
speed (cg(k) = V ).

As mentioned previously, however, with viscoelasticity included, the asymptotic
analysis is different and invokes properties of the three roots {ωj (k), j = 1, 2, 3}
discussed in the Appendix. Thus, in all of our asymptotic calculations as t → ∞
below, the focus is on interval endpoints at which the integrands peak, when it is
pertinent to recall that: (a) the imaginary part µ =α0/3 − (A + B)/2 of ω1,2, which is
the real exponential coefficient in the integrands of I1 and I2, monotonically increases
from its minimum (namely µ =0) at k = 0; whereas (b) the real exponential coefficient
ν = α0/3 + A + B in the integrand of I3 corresponding to ω3 attains its maximum
(namely ν = α0) at k = 0 and monotonically decreases with k, so we first map the
point at infinity to the origin to evaluate I3 asymptotically. Moreover, rather than
asymptotically estimating integrals for large time t directly, our calculations are
simplified by estimating the derivatives of such integrals with respect to t instead,
from which the asymptotic behaviour of the original integrals can be deduced (see
also Olver 1974; Nugroho et al. 1999).

Recalling (12), the time derivatives of the integrals Ij (X, t) for j = 1, 2, 3 in (14) are

I1,t (X, t) =

∫ ∞

−∞

g(k, ω1) exp(−i[kX − (ω1 − kV )t])

(ω1 − ω2)(ω1 − ω3)
dk

=

∫ ∞

−∞
k tanh(kH )

(α0 − µ + iλ) exp(−µt) exp(−i[kX − (λ − kV )t])

2λ[λ + i(µ − ν)]
dk

and

I2,t (X, t) =

∫ ∞

−∞

g(k, ω2) exp(−i[kX − (ω2 − kV )]t)

(ω2 − ω1)(ω2 − ω3)
dk

=

∫ ∞

−∞
k tanh(kH )

(α0 − µ − iλ) exp(−µt) exp(−i[kX + (λ + kV )t])

2λ[λ − i(µ − ν)]
dk, (16)

so that

I1,t (X, t) + I2,t (X, t) =

∫ ∞

0

e−µt{A1(k)[sin(kX − Ψ1t) − sin(kX + Ψ2t)]

+ A2(k)[cos(kX − Ψ1t) + cos(kX + Ψ2t)]} dk. (17)

Here, the maximum amplitude functions are

A1(k) = k tanh(kH )
λ2 + (µ − α0)(µ − ν)

λ[λ2 + (µ − ν)2]
, A2(k) = k tanh(kH )

α0 − ν

λ2 + (µ − ν)2
, (18)

and Ψ1(k) = λ−kV and Ψ2(k) = λ+ kV are the phase functions including viscoelasticity.
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The first integral in (17) resembles the time derivative of the integral in the elastic
limit given in (15), when ν =α0 and the second integral in (17) vanishes, but the
additional exp(−µt) factor introduced by the viscoelasticity plays an essential role
in the analysis here. Thus, the asymptotic evaluation of the integrals in (17) as
t → ∞ follows from the behaviour of the amplitudes and phase functions in the
neighbourhood of k = 0, where the exponential coefficient µ attains its minimum (cf.
Olver 1974, chap. 4, § 6). As was foreshadowed following (12), the point k = 0 at which
µ =0 is excluded from the range of integration by requiring k � ε > 0, such that the
minimum of µ occurring near k = 0 is small but positive and hence the integrands in
(17) decay exponentially with time. Nevertheless, for asymptotic purposes, the decay
factor is negligible sufficiently close to k = 0 (as ε → 0), where the leading terms in the
Taylor series for the amplitude and phase functions are

A1(k) � k

√
H

g
, A2(k) = O(A0Dk8), Ψ1,2(k) � k[c(k) ∓ V ],

where c(k) =
√

gH (1 − k2H 2/6 + · · ·). Consequently, although one amplitude function
and both phase functions are independent of viscoelasticity to leading order near
k = 0, when V �=

√
gH such that Ψ1,2 =O(k), we have (a) the first integral in (17)

with amplitude function A1(k) is O(t−2) as t → ∞; and (b) the second integral in (17)
with amplitude function A2(k) is not only proportional to the viscoelastic parameter
A0, but also asymptotically smaller as t → ∞. Thus, the exp(−µt) factor introduced
by the viscoelasticity then ensures that the I1 + I2 contribution to the deflection in
(13) is transient O(t−1) as t → ∞ – even at the critical load speed V = cmin, where the
time-dependent elastic theory predicts that the deflection does not approach a steady
state. On the other hand, when V =

√
gH so that the phase function Ψ1 � k3H 3/6

to leading order, this asymptotic analysis reproduces the elastic growth rate O(t1/3)
as t → ∞ for the one-dimensional response to a line load (Schulkes & Sneyd 1988;
Squire et al. 1996).

The time derivative of the integral I3(X, t), arising due to the additional imaginary
root ω3 introduced by the viscoelasticity (cf. (9)), is

I3,t (x, t) =

∫ ∞

−∞

g(k, ω3) exp(−i[kX − (ω3 − kV )t])

(ω3 − ω1)(ω3 − ω2)
dk

= −
∫ ∞

−∞
k tanh(kH )

(α0 − ν) exp(−νt) exp(−ik(X + V t))

λ2 + (µ − ν)2
dk

= −2

∫ ∞

0

A2(k) exp(−νt) cos[k(X + V t)] dk. (19)

Let us recall that ν ≡ Im(ω3) > 0 decreases monotonically as k increases, and the
amplitude function A2(k) here is defined in (18) above. After mapping the point
at infinity (k = ∞, where ν attains its minimum) to the origin (k = 0), we have
ν =α0 −A0 +O(k4) and A2(k) = O(k5), so that I3,t (X, t) = O(A0t

−3/2 exp[−(α0 −A0)t]).
In § 2, we noted the requirement that A0 � α0, hence for t → ∞ the integral in (19) is
proportional to the viscoelastic coefficient A0, and decays either exponentially when
A0 <α0 or O(t−3/2) when A0 = α0. Thus, the I3 contribution to the deflection in (13) is
also transient, decaying either exponentially when A0 <α0 or O(t−1/2) when A0 = α0,
as t → ∞.
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4. Point load
4.1. The time-dependent deflection

For an impulsively started localized (point) load of weight F0 subsequently travelling
with uniform speed V in the positive x-direction, the loading function is f (x, y, t) =
F0δ(x − V t)δ(y)H (t), with Fourier transform (Wong 1989)

f̂ (k1, k2, ω) =
F0√
8π

[
δ(ω − kV ) +

1

πi(ω − k1V )

]
.

Thus in this case, on again introducing the coordinate X = x − V t relative to the
moving reference frame of the load, from (7) the deflection is

η(X, y, t) = − F0

8π2ρ

∫∫
g(k, kV ) exp(−i(k1X + k2y))

W (k, k1V )
dk1 dk2

− F0

8π3ρ

∫∫∫
g(k, ω) exp(−i[k1X + k2y − (ω − k1V )t])

WP (ω)
dω dk1 dk2, (20)

where k2 = k2
1 + k2

2 and WP (ω) ≡ (ω − k1V )W (ω).
Our analysis here is at first quite similar to that given for the line load in the

previous section. Thus, except at k = 0, the quartic WP (ω) has four distinct roots,
namely the suitably modified ω0 = k1V , and precisely the same three roots ω1,2,3 as
defined via (12). Hence, implicitly excluding the point at k = 0, the second integral in
(20) may be partitioned as

F0

8π3ρ

3∑
j=0

∫∫∫
g(k, ω) exp(−i[k1X + k2y − (ω − k1V )t])

W ′
P (ωj )(ω − ωj )

dω dk1 dk2,

where the prime on WP (ω) again denotes differentiation with respect to variable ω.
Then, integrating with respect to ω via the Cauchy residue theorem, from (20) the
deflection in a form analogous to (13) is

η(X, y, t) =
F0

4π2ρ
(I0 + I1 + I2 + I3), (21)

but now involving double integrals

Ij (X, y, t) = −i

∫ ∞

−∞

∫ ∞

−∞

g(k, ωj ) exp(−i[k1X + k2y − (ωj − k1V )t])

W ′
P (ωj )

dk1 dk2. (22)

The time-independent contribution obtained from the integral I0 here is identical to
the steady-state viscoelastic result (4.2) of Hosking et al. (1988) for a point load, and
the time-dependent behaviour again resides in the contribution from the remaining
integrals denoted by I1, I2 and I3.

4.2. Asymptotic analysis

To analyse the time-dependence defined by the three double integrals I1,2,3 in (22), it
is again convenient to consider their time derivatives, but now also introduce polar
coordinates (cf. Nugroho et al. 1999). Thus, under the coordinate transformation
X = r cos ξ , y = r sin ξ , k1 = k cos θ and k2 = k sin θ , it follows, for example, that

I1,t (r, ξ, t) =

∫ ∞

0

∫ π

−π

kg(k, ω1) exp(−i[kr cos(θ − ξ ) − (ω1 − kV cos θ)t])

(ω1 − ω2)(ω1 − ω3)
dθ dk, (23)
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where it is notable that the roots ω1,2,3 are functions of k but not θ . Integrating with
respect to θ therefore yields

I1,t (r, ξ, t) = 2π

∫ ∞

0

kg(k, ω1)J0(kQ) exp(iω1t)

(ω1 − ω2)(ω1 − ω3)
dk, (24)

where J0 is the Bessel function of zero order and Q =
√

(r cos ξ + V t)2 + r2 sin2 ξ .
As time t → ∞, the inequality |r | � V t is satisfied in an ever expanding region
surrounding the localized (point) load at r = 0, so that in the neighbourhood of the
load J0(kQ) � (2/πkV t)1/2 cos(kV t − π/4).

The expression for the sum I1,t (r, ξ, t) + I2,t (r, ξ, t) analogous to (17) is

∫ ∞

0

∫ π/2

−π/2

k e−µt{A1(k)(sin[krcos(θ − ξ ) − (λ − kVcosθ)t] − sin[kr cos(θ − ξ )

+ (λ + kVcos θ)t]) + A2(k)(cos[kr cos(θ − ξ ) − (λ − kV cos θ)t]

+ cos[kr cos(θ − ξ ) + (λ + kV cos θ)t])} dθ dk,

where the amplitudes A1(k) and A2(k) are the same as for the line load, i.e. as defined
in (18). Integration with respect to θ then produces

I1,t (r, ξ, t) + I2,t (r, ξ, t) = 2π

∫ ∞

0

k e−µtJ0(kQ)[−A1(k) sin(λt) + A2(k) cos(λt)] dk.

(25)

In the elastic limit, (25) and the previous expression reduce to the time derivative of
each of the corresponding expressions in equation (3.8) of Nugroho et al. (1999).

The anelastic response as t → ∞ may be assessed from (25) by first invoking
J0(kQ) � (2/πkV t)1/2 cos(kV t − π/4), so that we may consider the asymptotic beha-
viour of the result

t−1/2

∫ ∞

0

k1/2 e−µt
[
−A1(k) cos

(
kV t− 1

4
π
)
sin(λt) + A2(k) cos

(
kV t− 1

4
π
)
cos(λt)

]
dk

= t−1/2

∫ ∞

0

k1/2 e−µt
{

−A1(k)
[
sin

(
Ψ1t + 1

4
π
)

+ sin
(
Ψ2t − 1

4
π
)]

+ A2(k)
[
cos

(
Ψ1t + 1

4
π
)

+ cos
(
Ψ2t − 1

4
π
)]}

dk, (26)

where as before Ψ1(k) = λ − kV and Ψ2(k) = λ + kV are the phase functions with
viscoelasticity. Comparison may be made with the integrals in (17) when X = 0, to
encapsulate just how the two-dimensional response (due to a point load) essentially
differs from the one-dimensional response (due to a line load). Thus, apart from phase
shifts, there is an additional t−1/2 factor outside the integral (26), and an additional
k1/2 factor inside this integral. The asymptotic analysis of this integral must of course
allow for the additional k1/2 factor, but otherwise it is quite similar to the analysis
in the previous section. Hence, when the additional t−1/2 factor is also included, it
follows that the I1 + I2 contribution to the deflection in (21) is transient O(t−2) as
t → ∞, even at the critical load speed V = cmin – and indeed at all load speeds except
the gravity wave speed

√
gH , when the elastic decay rate O(t−1/3) as t → ∞ found by

Nugroho et al. (1999) is recovered.
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The contribution from the additional imaginary root ω3 is again transient. This
follows from the time derivative

I3,t (r, ξ, t) = 2π

∫ ∞

0

kg(k, ω3)J0(kQ) exp(iω3t)

(ω3 − ω1)(ω3 − ω2)
dk (27)

analogous to (24), and hence the asymptotic behaviour as t → ∞ of

t−1/2

∫ ∞

0

k1/2 e−νtA2(k) cos(kV t − π/4) dk

analogous to the dominant component of (26), where A2(k) is again defined in (18).
Thus, mapping the point at infinity (k = ∞) to the origin (k = 0) once more, it emerges
that the I3 contribution in (21) is proportional to A0 and decays either exponentially
when A0 <α0 or O(t−15/8) when A0 = α0, as t → ∞.

5. Numerical computation
To complement the asymptotic results obtained in the preceding two sections,

the evolution of the deflection may be determined numerically from the complete
time-dependent expressions, namely (13) and (14) for the line load, or (21) and
(22) for the point load. We adopted the physical parameters D = 7.324 × 109 Nm−2,
ρ = 103 kgm−3, h = 2.5 m and H = 350 m, as in previous calculations for a floating
ice plate in the Antarctic (cf. Davys et al. 1985; Squire et al. 1996); and also the
viscoelastic parameters A0 =α0 = 0.1 s−1 as in Hosking et al. (1988), unless otherwise
indicated.

5.1. Line load

For convenience, the constant factor F0/(2πρ) in (13) was ignored, since the time
variation and the relative magnitude of the deflections (rather than their actual
magnitudes) are of most interest. The integrals in (14) were computed by fast
Fourier transform, with grid sizes corresponding to both 4096 and 8192 points
to provide an implicit check on accuracy. Time development of the deflection is
shown in figures 2 to 4 for the respective load speeds V = 18 m s−1 < cmin(subcritical),
V = cmin =22.5 m s−1(critical), and cmin <V = 30 m s−1 <

√
gH (supercritical). As anti-

cipated from the previous time-independent viscoelastic theory (Hosking et al. 1988),
the maximum deflection lags behind the load (here shown moving from right to left),
and it now appears that this phenomenon occurs quite soon after a load begins
to move. The time development of the deflection at the higher gravity wave speed
V =

√
gH = 58.6 m s−2, and at an even higher representative load speed

√
gH < V =

70 m s−2 when there are no trailing waves, are shown in figures 5 and 6, respectively.
As is evident in these figures, the largest maximum deflection at any time t occurs
at the critical speed V = cmin . The relatively small maximum deflections at the higher
load speeds shown in figures 5 and 6 are comparable to the leading flexural wave
amplitudes elsewhere.

Except at V =
√

gH , the deflections approached a steady state, and the typical time
required was about a minute. At the load speed V =

√
gH , the only load speed at

which the viscoelastic deflection continued to grow, the maximum response was not
comparable with others until at least ten minutes had elapsed (cf. figure 7), and even
then, it remained almost an order of magnitude smaller than the maximum deflection
at the critical speed V = cmin. The time required to approach a steady state (at any
load speed other than

√
gH ) was found to be much the same for different viscoelastic
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Moving load

V t = 0 s

t = 100 s

Figure 2. The time development of the deflection for a line load moving at the representative
subcritical speed V = 18 m s−1 <cmin. The parameters are A0 = α0 = 0.1; D = 7.324 × 109 Nm−2;
ρ = 1000 kgm−3; g = 9.8 m s−2; H = 350m.

Moving load

V t = 0 s

t = 100 s

Figure 3. The time development of the wave system for a line load moving at the critical
speed V = 22.5 m s−1. The parameters are as in figure 2. The maximum value is approximately
4 × 10−5 (m).

Moving load

V t = 0 s

t = 100 s

Figure 4. The time development of the wave system for a line load moving at the
representative supercritical speed cmin < V =30m s−1 <

√
gH . The parameters are as in figure 2.

The maximum value is approximately 1.5 × 10−5 (m).

Moving load

V t = 0 s

t = 100 s

Figure 5. The time development of the wave system for a line load moving at the gravity
wave speed V =

√
gH =58.6 m s−1. The parameters are as in figure 2.

Moving load

V t = 0 s

t = 100 s

Figure 6. The time development of the wave system for a line load moving at the rather
high speed

√
gH <V = 70 m s−1. The parameters are as in figure 2. The maximum value is

approximately 2 × 10−6 (m).
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Figure 7. The maximum deflection versus time for a line load moving at the gravity wave
speed V =

√
gH = 58.6m s−1.

parameters, but the eventual maximum deflection varied as the time-independent
viscoelastic theory predicts – including the result that the pronounced maximum
deflection at the critical load speed V = cmin is moderated most of all (cf. figure 9 in
Hosking et al. 1988 in particular). Thus, while the maximum deflection at V = cmin in
the elastic limit (A0 = 0) continually tended higher with time as the elastic theory of
Schulkes & Sneyd (1988) predicts, it always approached a steady-state value which
decreased most as the viscoelastic parameter A0 � α0 = 0.1 was increased from zero.

5.2. Point load

Two-dimensional steady-state wave patterns produced at various load speeds were
first derived by Davys et al. (1985), from far-field asymptotic theory for a steadily
moving point load on a floating elastic plate. Wave surface plots for a distributed
uniform (rectangular) load were given by Milinazzo et al. (1995), with less reliance
on the far-field approximation. Bukatov & Zharkov (1989) avoided the far-field
assumption altogether and included time dependence, and obtained similar deflection
fields (cf. also Squire et al. 1996).

Numerical computation for a point load from equations (21) and (22) yielded an
ultimate steady-state response at every load speed considered, including V =

√
gH .

Moreover, a steady state was approached quite quickly for each of the regimes
represented in figures 2 to 4. An example of the typical rapid time development of the
wave pattern produced is illustrated in figure 8, for a representative supercritical
load speed cmin <V = 40 m s−1 <

√
gH . Figure 9 shows the viscoelastic wave

pattern contours computed for the load speeds V = cmin = 22.5 m s−1(critical), cmin <

V = 40 m s−1 <
√

gH (supercritical), V =
√

gH = 58.6 m s−2 and
√

gH < V = 70 m s−2.
Figure 10 demonstrates how the viscoelasticity produces a small lag in the wave
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(a) (b)

(c) (d)

Figure 8. Time development of a two-dimensional wave pattern at a representative super-
critical load speed. The parameters are α0 = 0.1; A0 = 0.01; V = 40 m s−1; D = 7.324 × 109;
H =350 m; g = 9.8m s−2 and ρ = 1000 kgm−3. (a) t = 10 s, (b) 30 s, (c) 60 s, (d) 100 s.

pattern, as was originally predicted in the steady-state theory of Hosking et al. (1988),
with increasing effect as the viscoelastic parameter A0 � α0 = 0.1 increases from
zero.

Figure 11 illustrates the asymmetry of the profile of the ice deflection along the
direction of motion of the load (when y = 0) at the subcritical load speed V = 10 m s−1.
Profiles for the elastic case and the anelastic case are shown at time t = 5, 25 and
100 s, for different values of the viscoelastic parameters A0 and α0. It can be seen that
the asymmetry increases with increased viscoelasticity. The asymmetry in the elastic
profile is due to time dependence and decreases with time.

Further attention was given to the time taken to approach a steady state, and
also to the behaviour of the lag in the maximum depression behind the moving load
(cf. Nugroho et al. 1999). Figure 12 shows profiles of the surface deflection at the times
t = 5, 15, 25 and 35 s for the load speeds and parameters previously considered in
figures 2 to 6 for the line load. The arrow marks the position of the load. Comparable
profiles along the direction of motion of the load (when y = 0) are on the left, and
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(a) (b)

(c) (d)

Figure 9. Contour of the developed two-dimensional wave pattern at critical, supercritical
and higher load speeds. Other parameters are α0 = 0.1; A0 = 0.1; t = 10 s; D = 7.324 × 109;
H = 350 m; g = 9.8m s−2 and ρ = 1000 kgm−3. (a) V = 22.5 m s−1, (b) 40m s−1, (c) 58.6 m s−1,
(d) 70 m s−1.

corresponding transverse profiles at the load (when x = 0) and also behind the load
(at x = 100). It can be seen that the two-dimensional deflection approaches a steady
state quite quickly, although it takes somewhat longer behind the load as expected.
The profiles for the two load speeds V =

√
gH = 58.6 m s−1 and V = 70 m s−1 show

the development of the shadow zone (cf. Davys et al. 1985). The increase of the lag
in the maximum depression behind the load with time is also evident in the y =0
profile.

Figure 13 shows more clearly how the lag (in metres) varies with time for load
speeds V less than

√
gH . At first, while the deflection approaches its steady state,

the lag is primarily due to time dependence. For the subcritical speed V = 18 m s−1,
the lag increases and then decays towards a small steady-state value. At the critical
speed V = cmin =22.5 m s−1, the lag is constant after just a few seconds. For load
speeds greater than the critical speed, the lag oscillates towards its steady value, at
frequencies that increase with the load speed. (For load speeds greater than

√
gH ,

the shadow zone appears quickly, and the location of the lag is not well defined.)
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(a) (b)

(c) (d)

Figure 10. Contour of the developed two-dimensional wave pattern at supercritical load speed
V =30m s−1 for various viscoelastic parameters A0. Other parameters are α0 = 0.1; t = 10 s;
D = 7.324 × 109; H = 350 m; g = 9.8 m s−2 and ρ = 1000 kgm−3. (a) A0 = 0, (b) 0.01, (c) 0.05,
(d) 0.1.

Figure 14 shows how the lag varies with time for different values of the viscoelastic
parameters A0 and α0. Increasing A0 increases the lag for all load speeds, but the lag
depends much more weakly on the value of α0. Viscoelasticity affects the lag relatively
more at lower load speeds.

6. Discussion
Even if they travel for quite some time, moving loads usually produce ice sheet

deflections small enough for linear theory to remain valid, but deflections observed
in the vicinity of loads moving at or near the minimum phase speed cmin for the
propagation of flexural–gravity waves are significantly larger. This phenomenon
has been understood by noting that cmin coincides with the group speed of these
flexural–gravity waves, so that the continual energy input from a load moving at
speed cmin does not radiate away into the far field as it does at higher load speeds,
but accumulates beneath the load in a solitary wave (subject to viscous dissipation).
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Figure 11. The centreline profile of the surface deflection along y = 0 for various viscoelastic
parameters at different times. The parameters are V = 10 m s−1; D = 7.324 × 109; H = 350 m;
g =9.8 m s−2 and ρ = 1000 kgm−3.

Higher load speeds typically include the gravity wave speed
√

gH , which is, however,
the lower bound for load speeds where ‘shadow zones’ appear, i.e. zones behind
the moving load where no waves propagate, although wave energy radiates away
elsewhere (cf. Davys et al. 1985; Squire et al. 1996).

As outlined in § 1, Kheysin (1971) and Schulkes & Sneyd (1988) discussed the
one-dimensional time-dependent response of a floating elastic plate (i.e. to an
instantaneously started line load). Their investigations were largely motivated by the
unbounded deflection predicted for at least one particular load speed (subsequently
identified with cmin) in the early time-independent theory of an elastic plate (Kheysin
1967; Nevel 1970), from the notion that such a response might be due to the load
effectively acting upon the plate for an infinite time. However, Nevel had suggested
that nonlinear effects, dissipation or ice inhomogeneity might remove the singularity
he found for a distributed (circular) load. Indeed, time-independent theory for the
one-dimensional and two-dimensional responses of a floating viscoelastic plate to a
steadily moving load (i.e. to a line load and a point load, respectively) inter alia
renders a pronounced but finite steady-state deflection at the critical speed cmin

(Hosking et al. 1988). Further, more recent time-dependent theory for the response
of a floating elastic plate to instantaneously started point and distributed (circular or
rectangular) loads predicts that in two dimensions the response approaches a steady
state at all other load speeds (whether subcritical or supercritical), including the
gravity wave speed

√
gH (Nugroho et al. 1999). The conclusion that a steady-state

response is always produced in a floating plate by a steadily moving load (i.e. at all
load speeds) is supported by the present time-dependent viscoelastic theory. Thus,
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Figure 12. Profiles of the surface deflection along y = 0, x = 0, and x = 100 (m) for different
load speeds at different times. The parameters are A0 = 0.1 = α0; D = 7.324 × 109; H = 350 m;
g = 9.8m s−2 and ρ =1000 kgm−3.

the time-dependent anelastic deflections of a floating plate to an impulsively started
moving line or point load limit (as time t → ∞) to the results previously obtained by
Hosking et al. (1988) for steadily moving loads, including the steady-state deflection
at the critical load speed cmin.

The residual issue is therefore how quickly the steady state at any load speed is
approached, and this question is also addressed in the present paper. For example,
asymptotic analysis indicates that the associated transients at the critical speed cmin

decay just as rapidly as do the transients at most higher load speeds. Indeed, in the
preferred two-dimensional viscoelastic theory (for the anelastic deflections of a floating
plate to an impulsively started moving point load) the transients present at the critical
and higher load speeds generally decay more rapidly than their counterparts in the
corresponding two-dimensional elastic theory (as t−2 rather than as t−1 for t → ∞),
except for a load travelling at the gravity wave speed

√
gH when the elastic decay rate

(as t−1/3 for t → ∞) prevails (cf. Nugroho et al. 1999). Numerical computations in the
two-dimensional theory demonstrate that the viscoelastic deflection closely resembles
its steady-state form in a matter of seconds after a load begins to move, and also
illustrate the initial time dependence of the ultimately steady-state viscoelastic lag in
the maximum deflection behind the load.

Parau & Dias (2002) considered nonlinear effects at load speeds approaching cmin

from below in the thin elastic plate model, by including plate curvature in the plate
equation and quadratic kinetic energy terms in the Bernoulli equation (cf. also Peake
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Figure 13. The lag, defined as the position of the maximum depression of the surface deflection
as measured along the line y = 0, as a function of time at different load speeds. The parameters
are A0 = 0.1 = α0; D = 7.324 × 109; H = 350 m; g = 9.8 m s−2 and ρ = 1000 kgm−3.

2001). More specifically, their contribution examines the steady deflections which may
occur at load speeds less than or at cmin, albeit only for the one-dimensional case of
a line load. They conclude that linear theory (which predicts a quasi-static response,
similar to that due to a stationary load) is appropriate for load speeds not too close
to cmin, and they find bounded deflections from their nonlinear theory for load speeds
up to or approaching cmin (depending upon the water depth). Although the linearity
assumption must break down if abnormally large deflections arise in the immediate
vicinity of a load travelling at the critical speed cmin, the observational evidence is
that a linear theory is otherwise appropriate for moving loads on ice sheets. However,
since both viscoelasticity and nonlinearity separately produce a bounded response at
cmin, a nonlinear viscoelastic theory might be developed to compare their relative and
composite effect on the maximum deflection occurring at that speed.

K. W. was supported by an Overseas Postgraduate Research Scholarship, provided
by the Commonwealth of Australia. R. J.H. is also grateful for financial support
under the Research Grant UBD/PNC2/2/RG/1(29).

Appendix
Consider the cubic equation ω3 + ipω2 + qω + ir =0 where p, q and r are real.

Substituting ω = x − ip/3 yields the ‘reduced’ Cardan form x3 + ax + b = 0, where

a = 1
3
(3q + p2), b =

i

27
(−2p3 − 9pq + 27r). (A 1)
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Figure 14. The lag, defined to be the position of the maximum depression of the surface
deflection as measured along the line y = 0, as a function of time at different load speeds and
viscoelastic parameters. The parameters are D = 7.324 × 109; H = 350 m; g = 9.8m s−2 and
ρ = 1000 kgm−3.

Note that a is real and b is pure imaginary, and the ‘reduced’ form has solution

x1, x2 = ±
√

3

2
(A − B) − 1

2
i(A + B), x3 = i(A + B), (A 2)

where

A=
3

√√√√− ib

2
+

√
−

(
a3

27
+

b2

4

)
, B =

3

√√√√− ib

2
−

√
−

(
a3

27
+

b2

4

)
. (A 3)

Since a3/27 + b2/4 is real and negative for p, q , r defined in (7) when k �=0, both A

and B are real even functions in k (A > B), defining two complex roots and one pure
imaginary root in (A 2) and consequently ω1,2 and ω3 in (8) in the main text. There
are several relevant results, summarized as follows.

Theorem

(i) Im(ω1,2) > 0 ( for k �= 0);
(ii) Im(ω3) > 0;
(iii) A + B is monotonically increasing on (−∞, 0), and monotonically decreasing on

(0, ∞);
(iv) In the neighbourhood of k = 0,

ω1,2 = ±
√

gH |k|(1 − k2H 2/6 + · · ·) + iO(k6),

ω3 = i[α0 − O(k6)].
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Figure 15. The contours of the three roots in the complex plane near k = 0. The circles
correspond to the values k = 0.02, 0.04 and 0.06 with the imaginary part of each root increasing
with k. (a) A0 = 0.1, (b) A0 = 0.05. The other parameters are α0 = 0.1, D = 7.324 × 109;
H = 350 m; g =9.8 m s−2 and ρ = 1000 kgm−3.

Proof. Since the roots ω1,2,3 defined by the real even functions A and B (and
viscoelastic constant α0) are even in k, let us restrict our attention to the domain
0 < k < ∞.
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(i) Using (A+B)3 = A3+B3+3AB(A+B) and AB = a/3, it follows that Im(ω1,2) = 0
is equivalent to −ib − 2ap/3 = −8p3/27, or pq = r . For p, q , r defined in (8) that
is k tanh(kH )Dk4A0/ρ =0, which is satisfied if and only if k = 0. For any arbitrary
k �= 0, one finds Im(ω1,2) > 0.

(ii) If Im(ω3) = 0 for some k, again using (A + B)3 =A3 + B3 + 3AB(A + B) and
AB = a/3 one has −ib + ap/3 =p3/27 implying r =0 or k tanh(kH )[(Dk4 + pg)α0 −
Dk4A0] = 0 from (8), and hence k = 0 since A0 � α0. But when k → 0, both q and r

tend to zero and Im(ω3) approaches its maximum α0 > 0, therefore ω3 has no zero
and Im(ω3) > 0.

(iii) Writing C = A+ B for convenience, one has that C3 = −ib + aC and conse-
quently (3C2 −a)C ′ = −ib′ +a′C, where the prime denotes differentiation with respect
to k. Now 3C2 − a = 3(C2 − AB) = 3(A2 + AB + B2) > 0, since a =3AB and the
quadratic form λ2 + λ+1 (with λ≡ A/B > 0) is positive definite. On the other hand,
C � 2α0/3 = −2p/3 so that −ib′ + a′C = −pq ′/3 + r ′ + q ′C � −pq ′/3 + r ′ − 2pq ′/3 =
− pq ′ + r ′ � 0, since −pq + r = −A0Dk5 tanh(kH )/ρ monotonically decreases as k

increases. Hence C ′ � 0, so that C =A+B monotonically decreases from its maximum
value 2α0/3 at k = 0 (C ′ = 0 only occurs at k = 0).

(iv) The results follow by straightforward calculation, or by using some symbolic
computational tool (e.g. MATLAB).

Figure 15(a) shows the contours of the three roots in the complex plane for
A0 =α0 = 0.1. The circles correspond to the values k = 0.02, 0.04 and 0.06. It can be
seen that the difference between the elastic and the anelastic case is near k = 0 where
ω3 �= 0, and for large k where Im(ω1)= Im(ω2) �= 0. For comparison, figure 15(b) shows
the corresponding results for A0 = 0.05 and α0 = 0.1, where ω3 does not tend to zero
as k goes to infinity.
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